|
Pierwszą rzeczą, jak rzuca się w oczy podczas analizy wykresów jest to, że jedynie w przypadku wkładu Matrix mamy do czynienia z rozkładem dwuwierzchołkowym. Oznacza to obecność porów o średnicy 1 – 8 mikronów (należy pamiętać, że skala na osi x jest logarytmiczna). Drugi punkt skupienia odpowiada porom o średnicy 0,02 – 0,1 mikrona. Na wykresie dotyczącym Substrat Pro widać pojedynczy, dosyć szeroki wierzchołek odpowiadający zakresowi 4 – 13 mikronów. Biorąc pod uwagę, że skala x jest skalą logarytmiczną, wierzchołek jest w rzeczywistości jeszcze szerszy niż widoczny na wykresie. Z kolei na Wykresie 3 widać pojedynczy, stosunkowo wąski wierzchołek. W rzeczywistości jest on niezwykle szeroki (skala logarytmiczna!), obejmuje bowiem wartości 20 – 60 mikronów. Otrzymane wyniki są zgodne z tymi uzyskanymi metodą BET dotyczącymi powierzchni właściwej. Wiadomo, że istnieje odwrotna zależność między średnicą porów a powierzchnią właściwą, co obrazują zamieszczone dane. Ziarna wkładu MicroMec charakteryzują się największą średnicą porów i najmniejszą powierzchnią właściwą określoną metodą BET. Matrix ma pory o najmniejszej średnicy, co pokazuje drugi szczyt, a jednocześnie największą powierzchnię właściwą. Substrat Pro plasuje się pośrodku zarówno jeśli chodzi o średnicę porów, jak i powierzchnię właściwą. Spoglądając na dwuwierzchołkowy Wykres 1 nasuwa się pytanie, jaka część całkowitej powierzchni przypada na pory o średnicy poniżej 0,4 mikrona, które są nieprzydatne z punktu widzenia filtracji biologicznej. Można to wyliczyć zarówno z danych otrzymanych z analizy porozymetrycznej jak i z samego rysunku. Całkowita objętość dla wkładu Matrix uzyskana z danych porozymetrycznych wynosi 0,3331 cm3/g (albo 3,331 x 10-7 m3/g). Ponieważ na wykresie przedstawiono cząstkową objętość w stosunku do średnicy porów, jej całka w odniesieniu do tej wartości (średnicy porów) powinna pozwolić na wyliczenie objętości wtłoczonej rtęci dla każdego fragmentu krzywej. Całkowanie jest łatwe do wykonania, przy założeniu że jego wynik to po prostu obszar pod krzywą. W tej sytuacji zmierzenie powierzchni pod krzywą w przedziale do 0,4 mikrona da pojęcie o tym, jaką część całkowitej powierzchni zajmują pory o średnicy poniżej 0,47 mikrona. Powiększoną kopię Wykresu 1 skserowano na papierze o gęstości 90 g/m2. Obszar pod krzywą wycięto i zważono otrzymując wynik 0,334 g. Następnie wycięto fragment odpowiadający wielkości porów 0,4 mikrona i mniejszej, który ważył 0,133 g. Oznacza to, że 0,133/0,334 = 0,3982 (39,82%) całkowitej objętości przypada na pory o średnicy 0,4 mikrona i mniejsze. Aby dowiedzieć się, jaką część całkowitej powierzchni zajmują pory różnych wielkości konieczne jest poczynienie pewnych założeń dotyczących ich kształtu. Aby ustalić granice, można zbadać dwa warianty. Pierwszy zakłada, że wszystkie pory są kuliste. Oznacza to, że pole powierzchni jest proporcjonalne do objętości V podniesionej do potęgi 2/3. A µ V2/3 W przypadku porów cylindrycznych, pole powierzchni jest proporcjonalne do objętości V podniesionej do potęgi 3/5: A µ V3/5 dla porów cylindrycznych Zależność między polem powierzchni a objętością dla porów kulistych jest oczywista, ale w przypadku porów cylindrycznych – już mniej. Poniżej zamieszczono wyjaśnienie obydwu z nich.
Kuli dotyczą poniższe wzory: V = 4/3pr3, A = 4pr2 Aby z objętości, gdzie promień podniesiony jest do sześcianu, wyliczyć pole powierzchni, gdzie promień (r) jest podniesiony do kwadratu, należy podnieść objętość do potęgi 2/3, tak więc r3(2/3) = r2.
W przypadku porów cylindrycznych objętość opisuje wzór pr2h, a pole powierzchni 2prh, gdzie h jest wysokością słupa rtęci w cylindrycznej kolumnie. Jednak h jest powiązane z r. Na początku XX wieku dwóch fizyków, pracując niezależnie od siebie nad równaniem Younga Leplace’a, ułożyło i rozwiązało równanie opisujące penetrację cieczy w cylindrycznej kapilarze (Lucas, Washburn). Ich równanie jest powszechnie stosowane (Batten). Dla celów niniejszej pracy wystarczy zaznaczyć, że wzrost wysokości słupa cieczy w kapilarze (h) jest proporcjonalny do pierwiastka kwadratowego z r. h µ r1/2 dla porów cylindrycznych Oznacza to, że: V µ r5/2 i A µ r3/2 więc A µ V3/5 dla porów cylindrycznych Można teraz ocenić, jaka część powierzchni całkowitej przypada na pory o średnicy 0,4 mikrona i mniejszej. Całkowita objętość wtłaczania wynosi 3,331x10-7 m3/g. Z tego 39,82% objętości (1,326x10-7 m3/g) przypada na pory o średnicy 0,4 mikrona lub mniejszej. Część pola powierzchni przypadająca na małe pory to: (1,326x10-7)2/3/(3,331x10-7)2/3 = 0,5412 dla porów kulistych; i (1,326x10-7)3/5/(3,331x10-7)3/5 = 05755 dla porów cylindrycznych. Oznacza to, że w przypadku porów kulistych 45,88% pola powierzchni jest użyteczne z punktu widzenia filtracji biologicznej, a w przypadku porów cylindrycznych wartość ta wynosi 42,45%. Mając to na uwadze, można w następujący sposób rozszerzyć Tabelę 1:
Próbka
|
Pole powierzchni BET (m2/g)
|
Matrix
|
2,1172
|
Matrix, biologicznie użyteczne kuliste pory
|
0,9714
|
Matrix, biologicznie użyteczne cylindryczne pory
|
0,8988
|
Substrat Pro
|
0,2171
|
Z założeń opartych o wyidealizowany kształt porów wynika, że powierzchnia właściwa jest proporcjonalna do objętości podniesionej do potęgi mniejszej od 1. Wzięcie pod uwagę dwóch ekstremalnych wariantów: porów idealnie kulistych i idealnie cylindrycznych doprowadziło do wyliczenia dwóch wykładników o zbliżonej wartości (0,60 i 0,66). Choć pole powierzchni przypadające na pory zbyt małe, by mogły w nich zachodzić procesy filtracji biologicznej, jest nieco większe niż połowa powierzchni całkowitej, powierzchnia dostępna dla bakterii jest we wkładzie filtracyjnym Matrix i tak większa niż we wkładach Substrat Pro i MicroMec. Wnioski Pomiary pola powierzchni metodą BET wskazują, że Matrix ma 10-krotnie większą powierzchnię właściwą niż Substrat Pro i ponad 20-krotnie większą niż MicroMec. Praktycznie cała powierzchnia właściwa w obu tych produktach przypada na pory o większej średnicy, odpowiedniej dla pełnienia funkcji filtra biologicznego, podczas gdy część pola powierzchni ziaren Matrix przypada na drobne pory, w których mogą zachodzić procesy fizyczne i chemiczne (nie biologiczne). Wyniki uzyskane dla dwóch różnych kształtów porów wskazują, że powierzchnia biologicznie aktywna w Matrix jest pomiędzy 4 – 4,5 razy większa niż w Substrat Pro i 8 – 9 razy większa niż w MicroMec.
Literatura Batten, G. L., in Proceedings of the 1991 International Paper Physics Conference. Atlanta, Georgia: TAPPI Press, 1991 pp. 67 – 70. Brunauer, S., Emmett, P. H., and Teller, E., J. Am. Chem. Soc. 60: 309 – 319 (1938). Laplace, P. S. de, Théorie de l’action capillaire, supplément à la traité de mécanique céleste 4o. Paris: 1806. Lowell, S., Shields, J. E., Thomas, M. A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Dordrecht, South Holland, The Netherlands: Kluwer Academic Publishers, 2004, p. 67. Lucas, R., Kolloid Zeitschrift 23: 15 (1918). Nagy, V. and Vas, L. M., Fibres & Textiles in Eastern Europe Vol. 13 No. 3 (51): 21 – 26 (2005). Ritter, H. L. and Drake, L. C., Ind. Eng. Chem. 17: 782 – 786 (1945). Sing, K. S. W., in Fraissard, J. P. and Conner, C. W., Eds., Physical Adsorption: Experiment, Theory and Applications. Dordrecht, South Holland, The Netherlands: Kluwer Academic Publishers, 1997, p. 6. Walton, K. S. and Snurr, R. Q., J. Am. Chem. Soc. 129 (27): 8852 – 8556 (2007). Washburn, E. W., Phys. Rev. 17 (3): 273 (1921). Westermarck, S. Use of Mercury Porosimetry and Nitrogen Adsorption in Characterisation of the Pore Structure of Mannitol and Microcrystalline Cellulose Powders, Granules and Tablets. Academic Dissertation. Helsinki, Finland: University of Helsinki (2000). Young, T., Phil. Trans. Roy. Soc. 95: 65 (1805).
|